a2zpapers.com

Exam. Code : 211002 Subject Code : 5542

M.Sc. (Mathematics) 2nd Semester ALGEBRA-II

Paper-MATH-563

Time Allowed—3 Hours]

[Maximum Marks—100

Note :- The candidates are required to attempt **two** questions from each unit. Each question carries equal marks.

UNIT-I

1. (a)	Prove that a	n irreducible	e element i	in a l	PID is a	always
	prime.					5

(b) Prove that every Euclidean Domain is a PID. 5

- 2. (a) Prove that F[x], F field, is an Euclidean ring. 5
 - (b) If R is an integral domain with unit element, then prove that any unit in R[x] must be unit in R. 5
- (a) Is Z[x] a Principal Ideal Domain ? Justify your answer.
 - (b) Prove in UFD, two non-zero elements possess HCF.
- 4. Prove that a if a ring R is PID then it is UFD. Is the converse true? Justify. 10

1

7393(2518)/CTT-39318

(Contd.)

5

www.a2zpapers.com www.a2zpapers.com bad free old Question papers gndu, ptu hp board, punjab

a2zpapers.com

UNIT-II

- If a, $b \in K$ are algebraic over F such that 5. (a) [F(a) : F] = m and [F(b) : F] = n and gcd(m, n) = 1, then prove that [F(a, b) : F] = mn. 5
 - (b) Prove that $\mathbb{Q}(\sqrt{2}, \sqrt[3]{5})$ is a simple extension. 5
- 6. (a) Give an example of an algebraic extension of a field which is not finite. 5
 - For a prime p, find the degree of splitting field of (b) $x^p - 1$ over \mathbb{Q} . 5
 - If K is algebraic over E and E is algebraic over F, 7. (a) then prove that K is algebraic over F. 5
 - Prove that the splitting field of a polynomial over F (b) is unique upto F-isomorphism. 5
 - 8. (a) Let θ be a root of an irreducible polynomial

 $x^3 - 2x - 2$. Then find $\frac{1+\theta}{1+\theta+\theta^2}$ in $\mathbb{Q}(\theta)$. 5

(b) Let f(x) be a non-constant polynomial over field F, then prove that there exists an extension E of F in which f(x) has a root. 5

UNIT-III

- Prove that a regular n-gon is constructible if and only if 9. $\varphi(n)$ is a power of 2. 10
- Prove that the characteristic of a finite field F is 10. (a) prime number say p and F contains a subfield isomorphic to \mathbb{Z}_p . 5
 - Construct a field with 27 elements. (b)

7393(2518)/CTT-39318

www.a2zpapers.com www.a2zpapers.com

ad free old Question papers gndu, ptu hp board, punjab

5

(Coutd.)

- 11. (a) Prove that the multiplicative group of non-zero elements of a finite field is cyclic. 5
 - (b) Show that all the roots of an irreducible polynomial over finite field are distinct. 5
- 12. Prove that a finite separable extension of a field is simple. 10

UNIT-IV

- 13. Prove that for a Galois extension E/F, there is 1-1 correspondence between the subgroups of G(E/F) and the subfields of E containing F.
 10
- 14. Let $E = \mathbb{Q}(\sqrt[3]{2}, w)$, where $w^3 = 1$, $w \neq 1$. Let $H \subseteq G(E/\mathbb{Q})$ and $H = \{\sigma_1, \sigma_2\}$ where σ_1 is the identity map and $\sigma_2(\sqrt[3]{2}) = \sqrt[3]{2}w$ and $\sigma_2(w) = w^2$. Find E_H . 10
- 15. Suppose that the Galois group G(E/F) of a polynomial f(x) over F is a solvable group, prove that E is solvable by radicals over F.
 10
- 16. (a) Give an example each of a polynomial which is solvable by radicals and a polynomial which is not solvable by radicals.
 - (b) Express $x_1^3 + x_2^3 + x_3^3$ as a rational function of elementary symmetric function. 3

UNIT-V

- State fundamental theorem of finitely generated module over PID. Prove that a finitely generated torsion-free module over PID is free.
 10
- 18. State and prove Schur's lemma for simple modules.

10

(Contd.)

7393(2518)/CTT-39318

www.a2zpapers.com www.a2zpapers.com

load free old Question papers gndu, ptu hp board, punjab k

3

- Prove that over PID, a submodule of finitely generated module is finitely generated. Is the result true in general ? Justify.
- 20. Let R be a commutative ring with unity and M, N free R-modules. Prove that Hom_R(M, N) is a free R-module if M is finitely generated. Further if N is also finitely generated, then find the basis of Hom_p(M, N).

7393(2518)/CTT-39318

1900

www.a2zpapers.com www.a2zpapers.com oad free old Question papers gndu, ptu hp board, punjab